CSU550 Series

550 Watts Distributed Power System

Total Power: 550 Watts **Input Voltage:** 90-264 Vac

164-320 Vdc

of Outputs: Main and Standby

Special Features

- · 550 W output power
- High power and short form factor
- 1U power supply
- High density design: 17 W/in³
- · Active Power Factor Correction
- EN61000-3-2 Harmonic compliance
- · Inrush current control
- · 80 Plus Platinum efficiency
- N+M redundant N+M ≤ 4
- Hot-pluggable
- · Active current sharing
- · Full digital control
- PMBus[™] compliant
- · Accurate input power reporting
- · Reverse airflow option
- · Conducted/Radiated EMI Class A
- EN61000-4-11

Safety

UL/cUL UL + CB Report CE Mark

CCC

BSMI

KC

TUV

Product Descriptions

The CSU550 series power supply features a very wide 90 to 264 Vac and 164 to 320 Vdc input voltage range and employs active power factor correction to minimize input harmonic current distortion and to ensure compliance with the international EN61000-3-2 standard – they have a power factor of 0.99 at full load. The power supplies also feature active AC inrush control, to automatically limit inrush current at turn-on to 10 A maximum.

The power supply employs a ultra high efficiency conversion topology, together with an innovative power transformer and rectifier construction that further improves power density and reduces interconnect power losses. Users have a choice of standard I²C or advanced PMBusTM communications. The control software runs under Windows on any standard PC, and uses a highly intuitive graphical user interface to simplify power supply set-up.

The CSU550 series can deliver up to 45 A from its main +12.15 Vdc payload output, and up to 2.5 A from its +12.2 Vdc auxiliary output. The form factor is 1U and may be used in single or in redundant configurations.

CSU550 series has a power density of more than 17 Watts per cubic inch, and compliant with 80plus Platinum Efficiency, its efficiency is 94% at nominal high AC line with 50 percent full load.

Model Numbers

Standard	Output Voltage	Minimum Load	Maximum Load	Stand-By Supply	Air Flow Direction
CSU550AP-3	12.15Vdc	0A	45A	12.2Vdc@2.5A	Normal (DC Connector to Handle)
CSU550AP-3-001	12.15Vdc	0A	45A	12.2Vdc@2.5A	Reversed (Handle to DC Connector)

Options

None

Electrical Specifications

Absolute Maximum Ratings

Stress in excess of those listed in the "Absolute Maximum Ratings" may cause permanent damage to the power supply. These are stress ratings only and functional operation of the unit is not implied at these or any other conditions above those given in the operational sections of this TRN. Exposure to any absolute maximum rated condition for extended periods may adversely affect the power supply's reliability.

Table 1. Absolute Maximum Ratings:

Parameter	Model	Symbol	Min	Тур	Max	Unit
Input Voltage						
AC continuous operation	All models	V _{IN,AC}	90	-	264	Vac
DC continuous operation	All models	$V_{IN,DC}$	164	-	320	Vdc
Maximum Output Power (Main + Stand-by)	All models	$P_{O,max}$	-	-	550	W
Isolation Voltage						
Input to outputs	All models		-	-	4242	Vdc
Input to safety ground	All models		-	-	2751	Vdc
Ambient Operating Temperature ¹	All models	T _A	0	-	+50	°C
Storage Temperature	All models	T _{STG}	-40	-	+70	°C
Humidity (non-condensing)						
Operating	All models		5	-	85	%
Non-operating	All models		5	-	95	%
Altitude						
Operating	All models		-	-	5,000	m
Non-operating	All models		-	-	15,200	m

Note 1 - Please refer to Operating Temperature for details.

Input Specifications

Table 2. Input Specifications:

Parameter	Conditions	Symbol	Min	Тур	Max	Unit
Operating Input Voltage, AC		V _{IN,AC}	90	115/230	264	Vac
Operating Input Voltage, DC		$V_{\rm IN,DC}$	164	-	320	Vdc
Input AC Frequency		f _{IN,AC}	47	50/60	63	Hz
Maximum Input Current $(I_O = I_{O,max}, I_{SB} = I_{SB,max})$	V _{IN,AC} = 90Vac	I _{IN,max}	-	-	8	А
No Load Input Power $(V_O = On, I_O = 0A, I_{SB} = 0A)$	All	I _{IN,no-load}	1	-	5	W
Harmonic Line Currents ¹	All THD Per EN 61000-3-2		-3-2			
Power Factor	I _O > 10%I _{O,max}	PF	0.89	-	-	
Startup Surge Current (Inrush) @ 25°C	V _{IN,AC} = 264Vac	I _{IN,surge}	-	-	10	Apk
Input Fuse	Internal, L 5x20mm, Quick Acting 10A, 420Vdc		-	-	10	А
Leakage Current to earth ground	$V_{IN,AC} = 264 Vac$ $f_{IN,AC} = 50 Hz$		-	-	0.85	mA
Operating Efficiency @ 25°C	$V_{IN,AC} = 230 Vac$ $f_{IN,AC} = 50 Hz$ $I_{O} = 10 \% I_{O,max}$ $I_{O} = 20 \% I_{O,max}$ $I_{O} = 50 \% I_{O,max}$ $I_{O} = 100 \% I_{O,max}$	η	88 91 94 91	- - -	- - -	% % % %
System Stability Phase Margin Gain Margin			45 10	- -	- -	Ø dB

Note 1 - Please refer to Harmonic Line Currents for details.

Output Specifications

Table 3. Output Specifications:

Parameter	Condition	Symbol	Min	Тур	Max	Unit
Footom: Cot Voltono	All	Vo	12.05	12.15	12.25	Vdc
Factory Set Voltage	All	V _{SB}	12.05	12.2	12.35	vac
Output Degulation	Inclusive of set-point, temperature change,	Vo	11.4	12.15	12.6	Vdc
Output Regulation	warm-up drift and dynamic load	V_{SB}	11.4	12.2	12.6	vac
Output Ripple, pk-pk	Measure with a 0.1µF ceramic capacitor in parallel with a 10µF	V _o	-	-	120	m\/
Оприг прре, рк-рк	tantalum capacitor, 0 to 20MHz bandwidth	V_{SB}	-	-	120	mV _{PK-PK}
Outrout Ourseart	All	Io	0	-	45	_
Output Current	All	I _{SB}	0	-	2.5	A
V _O Current Share Accuracy	25% to 100% I _{O,max} 15% to 25% I _{O,max}		- -	- -	5 10	%lo
V _O Minimum Current Share Loading			15	-	-	%
Number of Parallel Units ¹	Main Output "12V load share" connected		-	-	4	
Lood Consolitation	Ctout	Vo	500	-	25000	uF
Load Capacitance	Start up	V _{SB}	100		3100	uF
V _O Dynamic Response²	60% load change, slew rate = 0.25A/μs	±%V _O	11.4	-	12.6	V
Peak Deviation	1A load change slew rate = 0.25A/μs	±%V _{SB}	11.4	-	12.6	V

Note 1 - V_{SB} output do not use active current sharing. On paralleled units, maximum current on V_{SB} output rail should not exceed the current of one unit.

Note 2 - Recommend to test with 2000uF capacitive load at the VO output and 100uF at VSB output. For the dynamic the Min load should be 1A for +12V Main output.

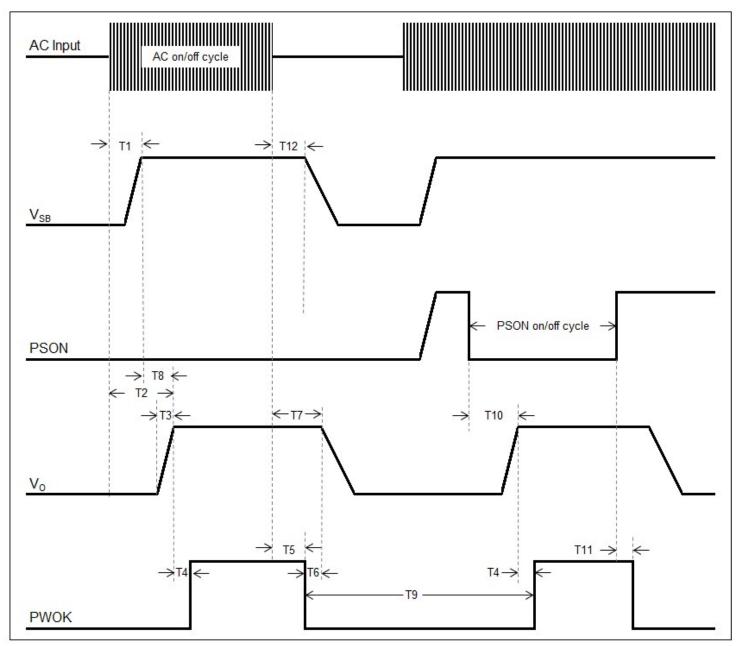
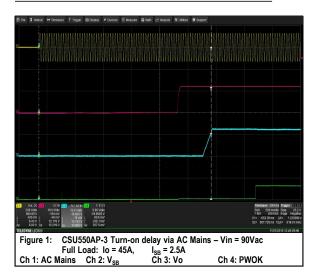
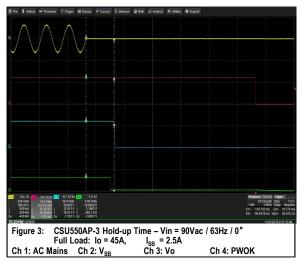
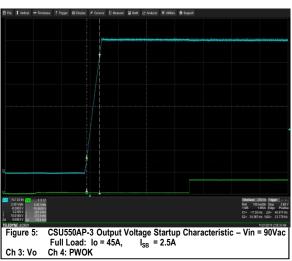
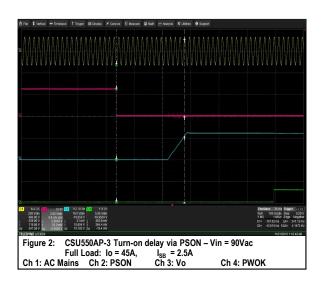

System Timing Specifications

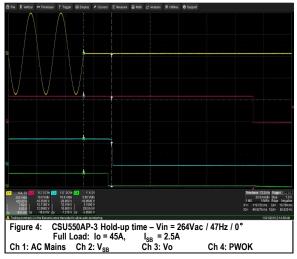
Table 4. System Timing Specifications:

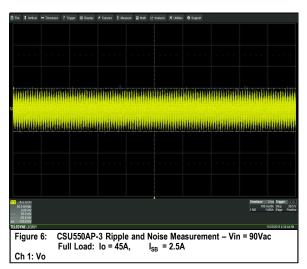

Label	Parameter	Min	Тур	Max	Unit
T1	Delay from AC being applied to V _{SB} being within regulation	-	-	1500	mSec
T2	Delay from AC being applied to output voltages being within regulation with PSON asserted low.	-	-	3000	mSec
Т3	V_{O} rise time, 0V to V_{O} in regulation.	5	1	70	mSec
T4	Delay from output voltages within regulation limits to PWOK asserted high at turn on.	100	1	500	mSec
T5	Delay from loss of AC to de-assertion of PWOK.	12	1	-	mSec
Т6	Delay from PWOK de-asserted to output voltages dropping out of regulation limits.	1	-	-	mSec
T7	Hold up time - time output voltages stay within regulation after loss of AC.	13	-	-	mSec
Т8	Delay from standby voltage in regulation to output voltage in regulation at AC turn on.	50	ı	1000	mSec
Т9	Duration of PWOK being in the de-asserted state during an off/on cycle using AC or the PSON signal	100	1	-	mSec
T10	Delay from PSON active to output voltages within regulation limits.	5	-	400	mSec
T11	Delay from PSON deactive to PWOK de-asserted low.	-	-	5	mSec
T12	Hold up time - time standby voltages stay within regulation after loss of AC.	70	-	-	mSec

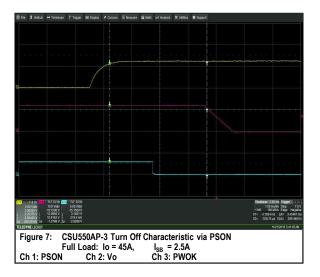

System Timing Specifications

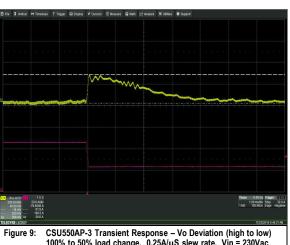

System Timing Diagram:

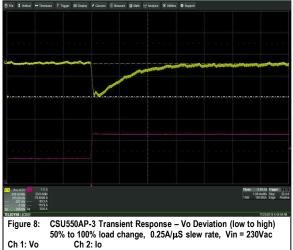



CSU550AP-3 Performance Curves









CSU550AP-3 Performance Curves

CSU550AP-3 Transient Response – Vo Deviation (high to low) 100% to 50% load change, 0.25A/µS slew rate, Vin = 230Vac Ch 1: Vo

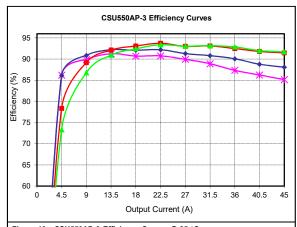


Figure 10: CSU550AP-3 Efficiency Curves @ 25 °C

→ 90 Vac → 115 Vac → 230 Vac

Loading: Io = 10%I_{o,max} increment to 45A, I_{SB} = 0A (12V)

Protection Function Specification

Input Fusing

CSU550 series is equipped with an internal non user serviceable 10A High Rupturing Capacity (HRC) 420Vdc fuse to IEC 127 for fault protection on L lines input.

Over Voltage Protection (OVP)

The power supply over voltage protection will be locally sensed. The power supply will shutdown and latch off after an over voltage condition occurs. This latch will be cleared by toggling the PSON signal or by an AC power interruption. The values are measured at the output of the power supply's connectors. The voltage will never exceed the maximum levels when measured at the power connectors of the power supply connector during any single point of fail. The voltage will never trip any lower than the minimum levels when measured at the power connector. +12V V_{SB} will be auto-recovered after removing OVP limit.

Parameter	Min	Nom	Max	Unit
V _O Output Overvoltage	13.2	/	14.5	V
V _{SB} Output Overvoltage	13.3	1	14.5	V

Over Current Protection (OCP)

The power supply have current limit to prevent the outputs from exceeding the values shown in table below. If the current limits are exceeded the power supply will shutdown and latch off. The latch will be cleared by toggling the PSON signal or by an AC power interruption. The power supply will not be damaged from repeated power cycling in this condition. +12V V_{SB} will be auto recovered after removing OCP limit.

Parameter	Min	Nom	Max	Unit
V _O Output Over current	55	/	62	А
V _{SB} Output Over current	3.0	/	4.5	А

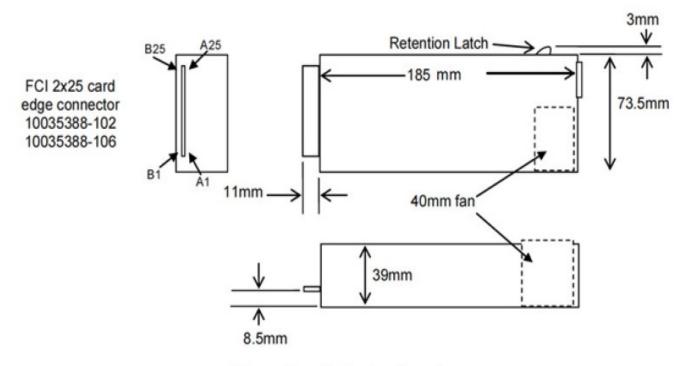
In addition OCP for +12V main will also be executed 10 seconds after Over Current Warning (OCW), whose threshold is 48~53A.

Over Temperature Protection (OTP)

The power supply will be protected against over temperature conditions caused by loss of fan cooling or excessive ambient temperature. In an OTP condition the PSU will shutdown. When the power supply temperature drops to within specified limits, the power supply will restore power automatically, while the $+12V V_{SB}$ remains always on. The OTP circuit have built in margin such that the power supply will not oscillate on and off due to temperature recovering condition. The OTP trip level have a minimum of $4^{\circ}C$ of ambient temperature margin.

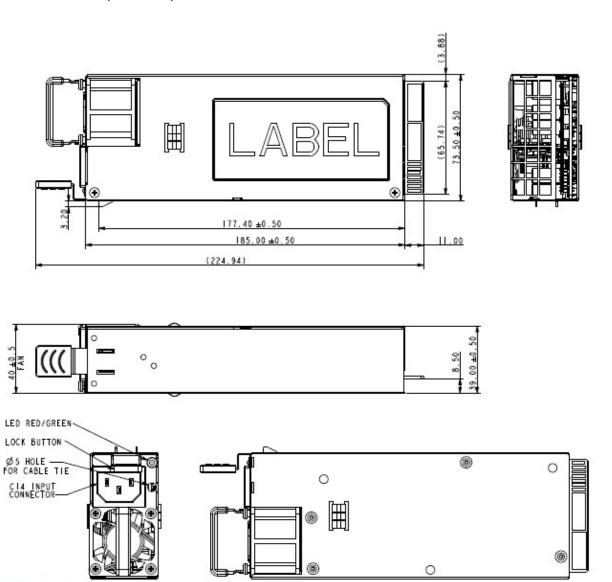
Mechanical Specifications

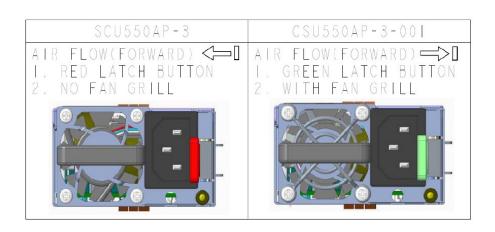
Mechanical Outlines (Unit:mm)


The physical size of the power supply enclosure is 39/40mm x 73.5mm x 185mm.

The power supply contains a single 40mm fan with normal airflow direction or reversed airflow direction.

The power supply has an identical card edge output that interfaces with a 2x25 card edge connector in the system.


The AC plugs directly into the external face of the power supply.


Refer to the following figure. All dimensions are nominal.

Power Supply Outline Drawing

Detailed mechanical(Unit:mm)

Connector Definitions

AC Input Connector

Pin 1 – L Pin 2 – N

Pin 3 - Earth Ground

Output Connector - Power Blades

Output Connector – Control Signals

A19 – SDA

A20 - SCL

A21 - PSON

A22 - SMBAlert#

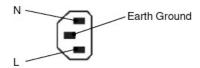
A23 - - VSENSE

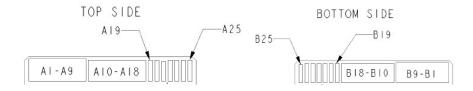
A24 - +VSENSE

A25 – PWOK

B19 – A0 (SMBus address)

B20 – A1 (SMBus address)


B21 - $12V_{SB}$

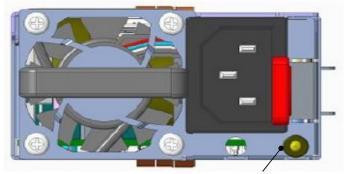

B22 - CR_BUS#

B23 - 12V load share

B24 - Present

B25 - Reserved

View from power supply output connector end


Rev.03.09.18_#1.4 CSU550 Series Page 14

Power / Signal Mating Connectors and Pin Types

Table 5. Mating Connectors for CSU550 series:

Reference	On Power Supply	Mating Connector or Equivalent
AC Input Connector	IEC320-C14	IEC320-C13
Output Connector	Card-edge	2x25 pin configuration of the FCI power card connector 10035388-102LF

LED indicator Definition

One bi-color (green/amber) LED at the power supply front provides status signal. The status LED conditions is shown on the below table.

Status LED

Condition	LED Status
V_{SB} = ON, V_{O} = OFF, AC Input = ON Power supply is cold standby state or always cold standby state as defined in the Cold Redundancy section of the CSU550 series Common Requirements Specification	1Hz Blinking Green
$V_{SB} = ON, V_O = ON$	Solid Green
V _O = OCP / UVP / OVP / FAN_FAULT / OTP V _{SB} = OCP/UVP AC cord unplugged or AC power lost; with a second power supply in parallel still with AC input power.	Red
Power supply warning events where the power supply continues to operate; high temp, high power, high current, slow fan.	1Hz Blink RED
AC Input = OFF	OFF
Power supply FW updating	2Hz Blink GREEN

Rev.03.09.18_#1.4 CSU550 Series Page 16

<u>Weight</u>

The CSU550 series weight is 741.6g/1.63lbs.

Environmental Specifications

EMC Immunity

CSU550 series power supply is designed to meet the following EMC immunity specifications:

Table 6. Environmental Specifications:

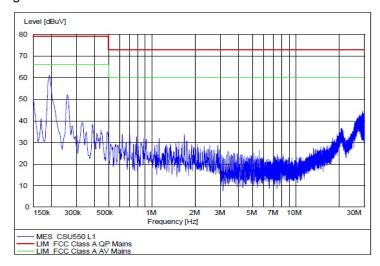
Document	Description
Class A of CISPR22 (EN55022) and FCC Part 15	Conducted and Radiated EMI Limits
EN61000-3-2 Class A	Harmonics
IEC/EN 61000-3-3	Voltage Fluctuations
EN55024:2010	Electromagnetic Compatibility (EMC) - Testing and measurement techniques – Electrostatic discharge immunity test. +/-15KV air, +/-8KV contact discharge, performance Criteria B
EN55024:2010	Electromagnetic Compatibility (EMC) - Testing and measurement techniques, Radiated, radio-frequency, electromagnetic field immunity test performance criterion: A
IEC61000-4-4; EN55024:2010	Electromagnetic Compatibility (EMC) - Testing and measurement techniques, Electrical Fast Transient/Burst Immunity Test. 2KV for AC power port, 1.0KV for DC ports, performance Criteria B
EN55024:2010	Electromagnetic Compatibility (EMC) - Testing and measurement techniques – 2KV common mode and 1KV differential mode for AC ports, performance criteria B.
EN55024:2010	Electromagnetic Compatibility (EMC) - Testing and measurement techniques: Voltage Dips and Interruptions: Criteria B: >95% reduction for 10ms; Criteria C: 30% reduction for 500mS, or >95% reduction for 5000mS, Criteria B
EN55024:2010	Information Technology Equipment-Immunity Characteristics, Limits and Method of Measurements

Rev.03.09.18_#1.4 CSU550 Series Page 18

Safety Certifications

The CSU550 series power supply is intended for inclusion in other equipment and the installer must ensure that it is in compliance with all the requirements of the end application. This product is only for inclusion by professional installers within other equipment and must not be operated as a stand alone product.

Table 7. Safety Certifications for CSU550 series power supply system:


Document	File #	Description
UL 60950-1, CAN/CSA C22.2 No. 60950-1	E132002-A415-UL	US and Canada Requirements
EN60950	8807	European Requirements
CB Certificate and Report	DK-53269-UL-A1-UL	(All CENELEC Countries)
CHINA CCC Approval	2016010907874664	China Requirements

EMI Emissions

The CSU550 series has been designed to comply with the Class A limits of EMI requirements of EN55022 (FCC Part 15) and CISPR 22 (EN55022) for emissions and relevant sections of EN55024:2010 for immunity. The unit is enclosed inside a metal box, tested at 550W using resistive load with cooling fan.

Conducted Emissions

The applicable standard for conducted emissions is EN55022 (FCC Part 15). Conducted noise can appear as both differential mode and common mode noise currents. Differential mode noise is measured between the two input lines, with the major components occurring at the supply fundamental switching frequency and its harmonics. Common mode noise, a contributor to both radiated emissions and input conducted emissions, is measured between the input lines and system ground and can be broadband in nature.

The CSU550 series power supplies have internal EMI filters to ensure the convertors' conducted EMI levels comply with EN55022 (FCC Part 15) Class A limits. The EMI measurements are performed with resistive loads at maximum rated loading.

Sample of EN55022 Conducted EMI Measurement at 110Vac input

Note: Red Line refers to Artesyn Quasi Peak margin, which is 6dB below the CISPR international limit. Green Line refers to the Artesyn Average margin, which is 6dB below the CISPR international limit.

Conducted EMI emission specifications of the CSU550 series

Parameter	Model	Symbol	Min	Тур	Max	Unit
FCC Part 15, class A	All	Margin	-	-	6	dB
CISPR 22 (EN55022) class A	All	Margin	-	-	6	dB

Rev.03.09.18_#1.4 CSU550 Series Page 20

Radiated Emissions

Unlike conducted EMI, radiated EMI performance in a system environment may differ drastically from that in a stand-alone power supply. The shielding effect provided by the system enclosure may bring the EMI level from Class A to Class B. It is thus recommended that radiated EMI be evaluated in a system environment. The applicable standard is EN55022 Class A (FCC Part 15). Testing ac-dc convertors as a stand-alone component to the exact requirements of EN55022 can be difficult, because the standard calls for 1m leads to be attached to the input and outputs and aligned such as to maximize the disturbance. In such a set-up, it is possible to form a perfect dipole antenna that very few ac-dc convertors could pass. However, the standard also states that an attempt should be made to maximize the disturbance consistent with the typical application by varying the configuration of the test sample.

Rev.03.09.18_#1.4 CSU550 Series Page 21

Harmonic Line Current

The power supply have passed the harmonic limits as specified in EN61000-3-2 for Class A Classifications for Harmonic Currents. The harmonic content of the power supply is measured at the maximum load.

Loading	≥10%	≥20%	≥40%	≥50%
230Vac/50Hz iTHD	<20%	<11%	<8%	<5%

Rev.03.09.18_#1.4 CSU550 Series Page 22

Operating Temperature

The CSU550 series power supplies will start and operate within stated specifications at an ambient temperature from 0 °C to 50 °C. The maximum operating temperature (50 °C) is to be de-rated by 1 °C per 300m above 2000m.

Forced Air Cooling

The CSU550 series power supplies included internal cooling fans as part of the power supply assembly to provide forced air-cooling to maintain and control temperature of devices and ambient temperature in the power supply to appropriate levels. The standard direction of airflow is from the DC connector end to the AC connector end of the power supply.

Storage and Shipping Temperature / Humidity

The CSU550 series power supplies can be stored or shipped at temperatures between -40 °C to +70 °C and relative humidity from 5% to 95% non-condensing.

Altitude

The CSU550 series will operate within specifications at altitudes up to 5,000 meters above sea level. The power supply will not be damaged when stored at altitudes of up to 15,200 meters above sea level.

Humidity

The CSU550 series will operate within specifications when subjected to a relative humidity from 5% to 85% non-condensing. The CSU550 series can be stored in a relative humidity from 5% to 95% non-condensing.

Vibration

The CSU550 power supply will pass the following vibration specifications:

Non-Operating Random Vibration

Acceleration	1.87		gRMS		
Frequency Range	10-500	Hz			
Duration	30	mins			
Direction	3 mutually perpendicular axis				
PSD Profile	FREQ 10-200 Hz 500 Hz	SLOPE dB/oct 	PSD g²/Hz 0.01 g ² /Hz 0.003 g ² /Hz		

Operating Random Vibration

Acceleration	0.15		gRMS
Frequency Range	5-100		Hz
Duration	30		mins
Direction	3 mutually perpendicula	r axis	·
PSD Profile	FREQ 5 Hz 10-50 Hz 100 Hz	SLOPE <u>dB/oct</u> 	PSD <u>g²/Hz</u> 0.000025 g²/Hz 0.0004 g²/Hz 0.000025 g²/Hz

Rev.03.09.18_#1.4 CSU550 Series Page 24

Shock

The CSU550 series power supply will pass the following vibration specifications:

Non-Operating Half-Sine Shock

Acceleration	30	G		
Duration	11	msec		
Pulse	Half-Sine			
No. of Shock	3 shock on each of 6 faces			

Operating Half-Sine Shock

Acceleration	4	G		
Duration	22	msec		
Pulse	Half-Sine			
No. of Shock	3 shock on each of 6 faces			

Power and Control Signal Descriptions

AC Input Connector

This connector supplies the AC Mains to the CSU550 series power supply.

Pin 1 - L

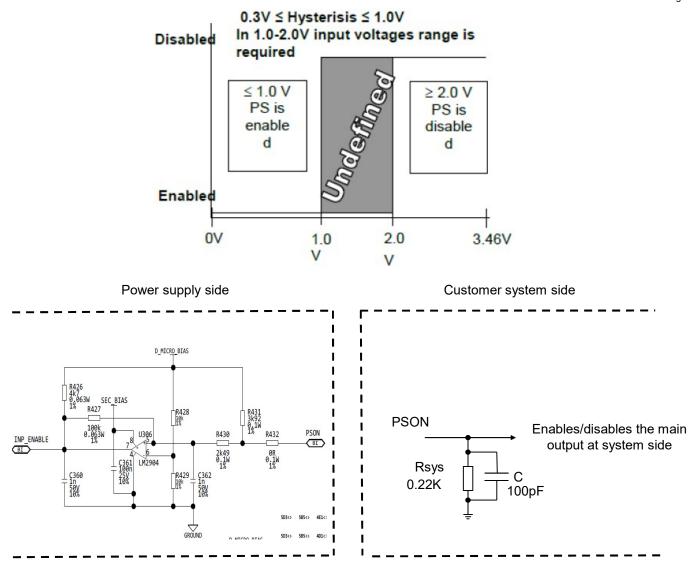
Pin 2 - N

Pin 3 - Earth Ground

Output Connector - Power Blades

These pins provide the main output for the CSU550 series. The + Main Output (V_O) and the Main Output Return pins are the positive and negative rails, respectively, of the V_O main output of the CSU550 series power supply. The Main Output (V_O) is electrically isolated from the power supply chassis.

A1-A9 - Main Output Return A10-A18 - + Main Output (V_O) B1-B9 - Main Output Return B10-B18 - + Main Output (V_O)


Output Connector - Control Signals

The CSU550 series contains a 14 pins control signal header providing an analogue control interface, standby power and i²C interface signal connections.

PSON - (Pins A21)

The PSON signal is an active Low and it enables power supply 12V main output.

Signal Type	Accepts an open collector/drain input from the system. Pull-up to VSB located in power supply			
PSON# = Low	0	N		
PSON# = High or Open	OI	FF		
	MIN	MAX		
Logic level low(power supply ON)	0V	1.0V		
Logic level high(power supply OFF)	2.0V	3.46V		
Source current, Vpson = low		4mA		
Power up delay: T _{pson_on_delay}	5ms	400ms		
PWOK delay: T _{pson_pwok}		50ms		

SMBALERT# - (Pin A22)

This signal indicates that the power supply is experiencing a problem that the user should investigate. This will be asserted due to Critical events or Warning events. The signal will activate in the case of critical component temperature reached a warning threshold, general failure, over-current, over-voltage, under-voltage, failed fan. This signal may also indicate the power supply is reaching its end of life or is operating in an environment exceeding the specified limits. Upon the default setting, the conditions under which the alert will be asserted include IOUT_OC_WARNING, VIN_UV_FAULT, and OT WARNING.

This signal is to be asserted in parallel with LED turning solid Red or blink Red.

SMBAlert# Signal Characteristics

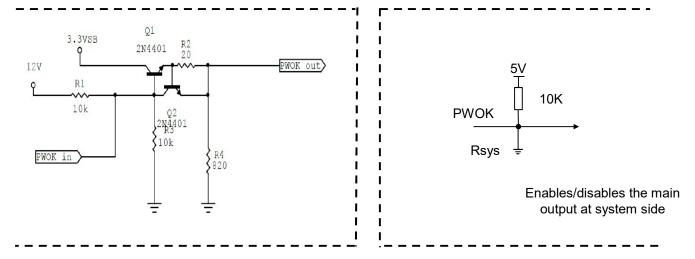
Signal Type(Active Low)	Open collector/drain output from power supply Pull-up to VSB located in system.		
Alert# = High	C	K	
Alert# = Low	Power Aler	t to system	
	MIN	MAX	
Logic level low voltage, Isink = 4mA	0V	0.4V	
Logic level high voltage, Isink = 50uA		3.46V	
Sink current, Alert# = low		4mA	
Sink current, Alert# = high		50uA	
Alert# rise and fall time		100uS	

+ VSENSE & -VSENSE - (Pin A23, A24)

+ VSENSE and -VSENSE are the remote sense signals for 12V main output voltage.

PWOK - (Pin A25)

PWOK is an active High output which is used to indicate that Power is OK. Specifically it indicates:


- The PWOK signal is active low.
- The 12V main output voltage is normal.
- The 12V standby output voltage is normal.
- The 12V main load is below OCP threshold.
- The 12V standby load is below OCP threshold.
- The power supply is operating within thermal limits.

If any of these conditions are not true then PWOK will be pulled low by the power supply.

Signal Type	Open collector/drain output from power supply. Pull-up to VSB located in the power supply.		
PWOK = High	Powe	er OK	
PWOK = Low	Power	Not OK	
	MIN	MAX	
Logic level low voltage, Isink = 4mA	0V	0.4V	
Logic level high voltage, Isource = 200uA	2.4V	3.46V	
Sink current, PWOK = low		4mA	
Source current, PWOK = high		2mA	
PWOK delay: T _{pwok on}	100ms	1000ms	
PWOK rise and fall time		100us	
Power down delay: T _{pwok_off}	1ms	200ms	

A recommended implementation of the PWOK circuits is shown below.

Note: the PWOK circuits should be compatible with 5V pull up resistor (>10k) and 3.3V pull up resistor (>6.8k)

CR_BUS# - (Pin B22)

There is an additional signal defined supporting Cold Redundancy. This is connected to a bus shared between the power supplies: CR_BUS#. This is a tri-state output signal of the power supply used to communicate a fault or Vout under voltage level has occurred in one of the power supplies. This is used to power on all the power supplies in the system via the CR_BUS#. When the signal is pulled high it allows all power supplies in cold standby mode to go into cold standby state when the load share voltage is below the VCR_ON level. When the signal is left open on all power supplies it forces all cold standby power supplies into the ON. Section 7.4 showing the logic state of the CR_BUS# signal depending upon the programmed configuration of the power supply in D0h, the operating state of the power supply, and the power supply fault status.

12V load share - (Pin B23)

12V load share is a single wire bus signal used to help equalize the output current from two or more power supplies connected to a common load. 12V load share should be taken that with two or more power supplies sharing current, the percentage is the combined current for all power supplies, not one. The voltage on the 12V load share line represents the percentage of rated output current each supply is providing. 0V is equivalent to 0% load, and 8V is equivalent to 100% load. 12V load share transients during hot insertion or removal will not cause the supply output to go out of regulation.

% Max Loading	12V load share Voltage (+/-5% tolerance above 20% load)
25%	2.0 V
50%	4.0 V
100%	8.0 V

Present # - (Pin B24)

This signal is an active Low signal that indicates presence or absence of power supply. The power supply generates this signal by wiring the signal pin to ground internally.

- Low PS is present
- High PS is removed from system

Artesyn Embedded Technologies

Rev.03.09.18_#1.4 CSU550 Series Page 29

A0, A1 - (Pins B19, B20)

Please refer to "Communication Bus Descriptions" section.

SDA, SCL - (Pins A19, A20)

Please refer to "Communication Bus Descriptions" section.

Communication Bus Descriptions

I²C Bus Signals

CSU550 series power supply contains enhanced monitor and control functions implemented via the I²C bus. The CSU550 series I²C functionality (PMBus[™] and FRU data) can be accessed via the output connector control signals. The communication bus is powered either by the internal 3.3V supply or from an external power source connected to the Standby Output (i.e. accessing an unpowered power supply as long as the Standby Output of another power supply connected in parallel is on).

If units are connected in parallel or in redundant mode, the Standby Outputs must be connected together in the system. Otherwise, the I²C bus will not work properly when a unit is inserted into the system without the DC source connected.

Note: PMBusTM functionality can be accessed only when the PSU is powered-up. Guaranteed communication I²C speed is 100K Hz.

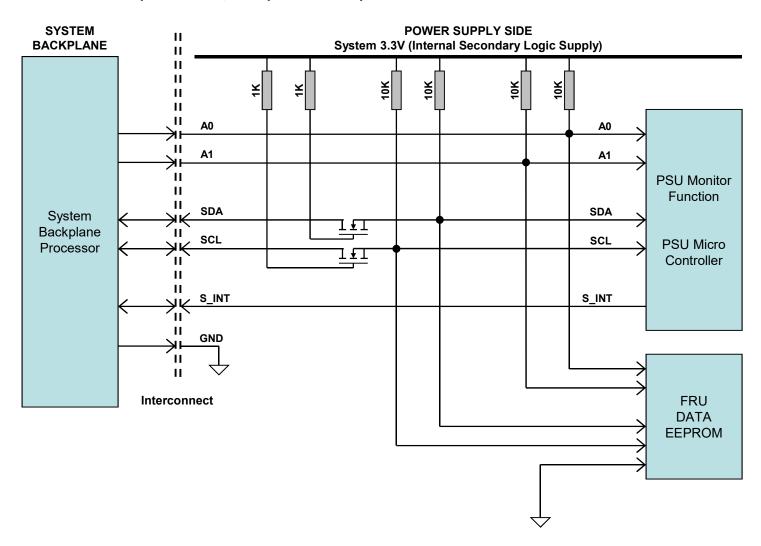
A0, A1(I²C Address Signals) - (Pins B19, B20)

These input pins are the address lines A0 and A1 to indicate the slot position the power supply occupies in the power bay and define the power supply addresses for FRU data and PMBus[™] data communication. This allows the system to assign different addresses for each power supply. During I²C communication between system and power supplies, the system will be the master and power supplies will be slave.

They are internally pulled up to internal 3.3V supply with a 10K resistor.

SDA, SCL (I²C Data and Clock Signals) - (Pins A19, A20)

I²C serial data and clock bus - these pins are internally pulled up to internal 3.3V supply with a 10K ohm resistor. These pins must be pulled-up by a 2K-10K ohm resistor to 3.3V or 5V at the system side.


I²C Bus Communication Interval

The interval between two consecutive I²C communications to the power supply should be at least 15ms to ensure proper monitoring functionality.

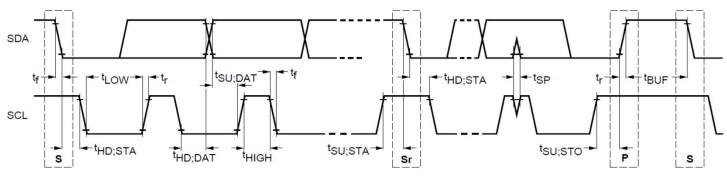
I²C Bus Signal Integrity

The noise on the I²C bus (SDA, SCL lines) due to the power supply will be less than 300mV peak-to-peak. This noise measurement should be made with an oscilloscope bandwidth limited to 100MHz. Measurements should be make at the power supply output connector with 10K ohm resistors pulled up to Standby Output and 47pF ceramic capacitors to Standby Output Return.

I²C Bus Internal Implementation, Pull-ups and Bus Capacitances

I²C Bus - Recommended external pull-ups:

Electrical and Interface specifications of I^2C signals (referenced to StandBy Output Return pin, unless otherwise indicated):


Parameter	Condition	Symbol	Min	Тур	Max	Unit
SDA, SCL internal pull-up resistor		R _{int}	-	10	-	Kohm
SDA, SCL internal bus capacitance		C _{int}	-	10	-	pF
Recommended external pull-up resistor	1 to 4 PSU	R _{ext}	-	2.2	-	Kohm

Logic Levels

CSU550 series power supply I²C Communication Bus will respond to logic levels as per below:

Logic High: 3.3V Nominal (Specs is 2.1V to 5.5V)** Logic Low: 500mV nominal (Specs is 800mV max)** **Note: Artesyn 73-769-001 I²C adapter was used.

Timings

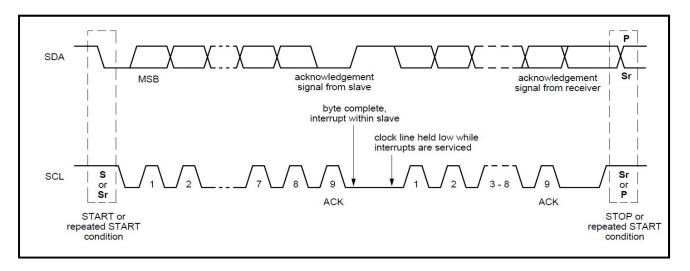
Domenton	Oh al	Standard-	Mode Specs	- Actual Measured		11:4
Parameter	Symbol	Min	Max			Unit
SCL Clock Frequency	f _{SCL}	0	100	90	90.9	
Hold time (repeated) START condition	t _{HD;STA}	4.0	-	4.74		μS
LOW period of SCL clock	t _{LOW}	4.7	-	4.	86	μS
HIGH period of SCL clock	t _{HIGH}	4.0	-	4.84		μS
Setup time for repeated START condition	t _{su;sta}	4.7	-	4.884		μS
Data hold time	t _{HD;DAT}	0	3.45	0.2416		μS
Data setup time	t _{SU;DAT}	250	-	4887		nS
Rise time	t _r	-	1000	SCL = 669.6	SDA = 710.4	nS
Fall time	t _f	-	300	SCL = 156.8 SDA = 146		nS
Setup time for STOP condition	t _{su;sto}	4.0	-	5.02		μS
Bus free time between a STOP and START condition	t _{BUF}	4.7	-	95***		μS

^{***} Note Artesyn 73-769-001 I²C adapter (USB-to-I²C) and Universal PMBus™ GUI software was used

Device Addressing

The CSU550 series will respond to supported commands on the I²C bus that are addressed according to pins A1 and A0 pins of output connector.

Address pins are held HIGH by default via pulled up to internal 3.3V supply with a 10K resistor. To set the address as "0", the corresponding address line should be pulled down to logic ground level. Below tables show the address of the power supply with A0 and A1 pins set to either "0" or "1".:

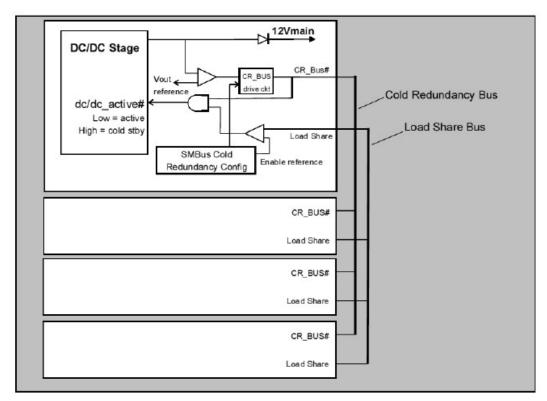

PSU Slot	Slot ID Bits		PMBus™ Address	EEPROM (FRU)
P50 510t	A 1	A0	PWBus ···· Address	Read Address
1	0	0	0xB0	0xA0
2	0	1	0xB2	0xA2
3	1	0	0xB4	0xA4
4	1	1	0xB6*	0xA6*

 $^{^{\}star}$ Default PMBus $^{\text{TM}}$ address when A0 and A1 are left open

I²C Clock Synchronization

The CSU550 series power supply apply clock stretching. An addressed slave power supply hold the clock line (SCL) low after receiving (or sending) a byte, indicating that it is not yet ready to process more data. The system master that is communicating with the power supply will attempt to raise the clock to transfer the next bit, but must verify that the clock line was actually raised. If the power supply is clock stretching, the clock line will still be low (because the connections are open-drain).

The maximum time out condition for clock stretching for CSU550 series is 100 microseconds.



Cold Redundancy

The CSU550 series defines a signal pin for Cold Redundancy. This capability help improve the efficiency of the power subsystem when more than one power supply is used in a system; such as 1+1 or 2+1 or 3+1 or 2+2 redundantly powered systems. Cold Redundancy uses the PMBus manufacturer specific command area to define commands for the system to configure the power supplies for Cold Redundancy.

Overview

Below is a block diagram showing the Cold Redundancy architecture. When the power subsystem is in Cold Redundant mode the number of power supply in active mode is controlled by the load share bus voltage. As the load share bus voltage decreases the power supplies programmed for cold standby will power off into cold standby state. This maximizes the efficiency of the total power subsystem. As the load share voltage decreases to minimum loads only the power supply configured to be the Active power supply in the cold redundancy scheme remains ON. Each power supply has an additional signal that is dedicated to supporting Cold Redundancy; CR_BUS#. This signal is a common bus between all power supplies in the system. CR_BUS# is asserted (pulled low) when there is a fault in any power supply OR the power supplies output voltage falls below the regulation. Asserting the CR_BUS# signal causes all power supplies in Cold Standby state to power ON. Whenever there is no Cold Redundant active power supply on the Cold Redundancy bus driving a HIGH level on the bus all power supplies are ON no matter their defined Cold Redundant roll (Active or Cold Standby). This guarantees that incorrect programming of the Cold Redundancy states of the power supply will never cause the power subsystem to shutdown or become over loaded. The default state of the power subsystem is all power supplies ON. There needs to be at least one power supply in Cold Redundant Active state or Standard Redundant state to allow the Cold Standby state power supplies to go into Cold Standby state.

Cold Redundancy 3+1 (or 2+2) - Functional Block Diagram

The following table shows the state of the power supplies programmed for Cold Standby mode based on the condition of the CR_BUS# signal and the Load Share bus voltage.

Logic Matrix for Cold Standby Power Supplies

CR_BUS#	Load share	Cold Standby Power Supply State(s)
High	< VCR_ON	Cold Standby
Low	< VCR_ON	Active
High	> VCR_ON	Active
Low	> VCR_ON	Active

Note: VCR_ON is the voltage threshold set inside the power supplies configured for Cold Standby which tells them to power down into Cold Standby state when the load share voltage is less than VCR_ON.

Cold Standby Power Supply Operating State

When the power supply is in Cold Standby state the power supply must meet the following requirements.

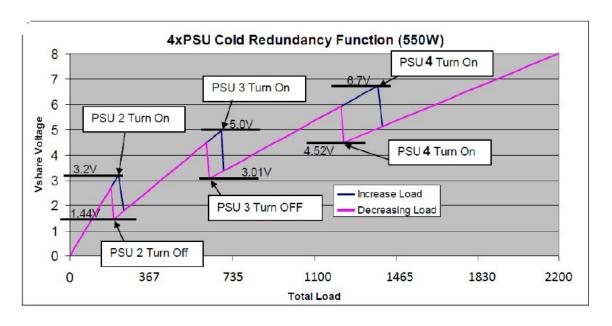
- 1) Power ON in < 100µs when Cold_Red bus is driven LOW
- 2) Turn off its output OR-ing FET
- 3) Keep its internal output capacitor before the output OR-ing FET charged to not less than 12.45V
- 4) Keep PWOK asserted
- 5) Disconnect any output dummy loads to prevent discharging of the pre-charged output capacitor
- 6) Power off any internal fans
- 7) Pre-bias its voltage error amplifier to maximum duty cycle (preventing the loop compensation from slowing the turn on process when CR_BUS# asserts)
- 8) Disable its output slow start circuit
- 9) Keep the PFC stage ON at lowest possible operating frequency and its output bulk capacitor charged
- 10) No PMBus fault or warning conditions reported via STATUS commands
- 11) PMBus READ_EOUT command shall continue to increment its sample counter and update its power accumulator
- 12) PMBus READ_PIN command should continue to report its input power

Powering on Cold Standby supplies to maintain best efficiency

Power supplies in Cold Standby state shall monitor the shared voltage level of the load share signal to sense when it needs to power on. Depending upon which position (1, 2, or 3) the system defines for the power supply in the cold standby configuration; the power supply will go into cold standby state or ON state at different level of the load share bus. Since as power supplies power ON they will share the load and cause the load share bus level to change; there needs to be two thresholds in each power supply depending upon if the power supply is in ON state or in cold standby state. The VCR_ON_EN level is used by the power supply when it is in Cold Standby state telling it when to power ON based on the load share voltage level. The VCR_ON_DIS level is used by the power supply when it is in ON state telling it when to go into Cold Standby state based on the load share voltage level. Below is an example calculation for a 4 power supply parallel configuration.

Example Load Share Threshold for Activating Supplies

	Enable Threshold for VCR_ON_EN	Disable Threshold for VCR_ON_DIS
Standard Redundancy	NA; Ignore dc/dc_ active# signal; power supply is always ON	
Cold Redundant Active	NA; Ignore dc/dc_ active# signal; power supply is always ON	
Cold Standby 1 (02h)	3.2V (40% of max)	3.2V x 0.5 x 0.9 = 1.44V
Cold Standby 2 (03h)	5.0V (62% of max)	5.0V x 0.67 x 0.9 = 3.01V
Cold Standby 3 (04h)	6.7V (84% of max)	6.7V x 0.75 x 0.9 = 4.52V


Notes: Maximum load share voltage = 8.0V at 100% of rated output power

These are example load share bus threshold; for any power supply these shall be customized to maintain the best efficiency curve for that specific model.

Cold Standby Power Supply Turn On / Off

Powering on and off of the cold standby power supplies is controlled by each power supply sensing the load share bus voltage. Once a power supply turns on after crossing the enable threshold; it lowers its threshold to the disable threshold. The system defines the 'position' of each power supply in the Cold Redundant operation. Below are timing requirements and example plots of thresholds and load share voltage as load ramps on 4 parallel power supplies.

- When load ramps up and crosses the load share voltage threshold the module becoming active wake up time must be
 1ms to make sure at maximum load slew rate the power supply must be able to handle the system load.
- When load ramps down and crosses the load share voltage threshold module go-to-sleep (cold standby) time must be < 5ms

Example Power On/Off of power supplies in Cold Redundant Mode (4x550W PSUs)

Powering on Cold Standby supplies during a fault or over current condition

When an active power supply asserts its CR_BUS# signal (pulling it low), all parallel power supplies in cold standby mode shall power on within 100µs.

SMBus Commands for Cold Redundancy

Configuring Cold Redundancy with Cold_Redundancy_Config (D0h)

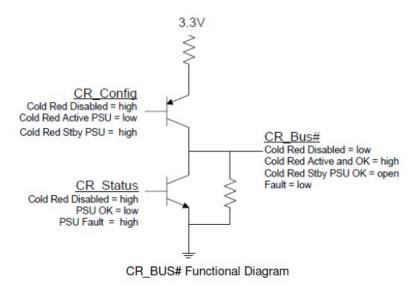
The PMBus manufacturer specific command MFR_SPECIFIC_00 is used to configure the operating state of the power supply related to cold redundancy. This command for Cold_Redundancy_Config is at D0h. Below is the definition of the values used with the Write Byte and Read Byte SMBus protocol with PEC. The below table shows the configuration of the power supply based on the value in the Cold_Redundancy_Config register.

Cold Redundancy Configuration Table

	Cold_Redundancy_Config (D0h)				
Value	State	Description			
00h	Standard Redundancy (default power on state)	Turns the power supply ON into standard redundant load sharing more. The power supply's CR_BUS# signal shall be OPEN but still pull the bus low if a fault occurs to activate any power supplies still in Cold Standby state.			
01h	Cold Redundant Active	Defines this power supply to be the one that is always ON in a cold redundancy configuration.			
02h	Cold Standby 1	Defines the power supply that is first to turn on in a cold redundant configuration as the load increases.			
03h	Cold Standby 2	Defines the power supply that is second to turn on in a cold redundant configuration as the load increases.			
04h	Cold Standby 3	Defines the power supply that is third to turn on in a cold redundant configuration as the load increases.			
05h	Always Cold Standby	Defines this power supply to be always in cold redundant configuration no matter what the load condition.			
06h-FFh	Reserved				

Cold Redundant Signal (CR_BUS#)

There is an additional signal defined supporting Cold Redundancy. This is connected to a bus shared between the power supplies: CR_BUS#. This is a tri-state output signal of the power supply used to communicate a fault or Vout under voltage level has occurred in one of the power supplies. This is used to power on all the power supplies in the system via the CR_BUS#. When the signal is pulled high it allows all power supplies in cold standby mode to go into cold standby state when the load share voltage is below the VCR_ON level. When the signal is left open on all power supplies it forces all cold standby power supplies into the ON. Below is a table showing the logic state of the CR_BUS# signal depending upon the programmed configuration of the power supply in D0h, the operating state of the power supply, and the power supply fault status.


Cold Redundancy State Table

Cold Redundant Config	Operating State	Power Supply Fault Status	CR_Bus#
Active	On	OK	High
Cold Standby 1,2,3	On	OK	Open
Cold Standby 1,2,3	Cold Standby	OK	Open
Active	Off	Fault	Low
Cold Standby 1,2,3	On	Fault	Low
Cold Standby 1,2,3	Cold Standby	Fault	Low

The below figure is a schematic representation of the logic for the CR_BUS# signal. The CR_Config input is programmed based on the value in the Cold Redundancy Config register.

The CR_Status input is based on both the Cold_Redundancy_Config register as well as the fault state of the power supply. The resulting output is a tri- state output. The output is Low when there is a Fault in any power supply or when Cold Redundancy is disabled. The output is High only when a power supply is programmed for the Cold Redundancy Active mode and it is functioning OK. The output is Open only when the power supply is programmed for Cold Redundant Standby mode and is functioning OK. This mean that there needs to be one good power supply programmed for

Active Cold Redundant mode to allow power supply to function in cold standby mode; otherwise, all power supplies will power ON and come out of cold redundant mode.

CR_BUS# Signal Characteristic

Cional Tura	Active: Tri-state output Cold Standby: Input signal		
Signal Type	Min	Max	
Logic level low (power supply ON)	0 V	0.4 V	
Logic level high (power supply OFF)	2.4 V	3.46 V	
Source current, Cold Red = high	2 mA		
Sink current, Cold_Red = low	400 μΑ		
Cold_Red fault delay		10 µs	
Cold_Red turn on delay		100 µs	

BMC Requirements

The BMC uses the Cold_Redundancy_Config command to configure the power supply's roll in cold redundancy and to enabled / disable cold redundancy. It is recommended that the BMC schedule a rolling change for which PSU is the Active, Cold Stby1, Cold Stby 2, and Cold Stby 3 power supply. This allows for equal loading across power supply over their life.

Black Box

The power supply shall store PMBus and other data into non-volatile memory upon a critical failure that caused the power supply to shutdown. The data can be accessed via the PMBus interface by applying power to the $12V_{SB}$ pins. No AC power needs to be applied to the power supply.

Data is saved to the Black Box for the following fault events:

- General fault
- Over voltage on output
- Over current on output
- Loss of AC input
- Input voltage fault
- Fan failure
- Over temperature

Black Box Process:

- 1) System writes system tracking data to the power supply RAM at power ON
- 2) System writes the real time clock data to the PSU RAM once every ~5 minutes
- 3) Power supply tracks number of PSON and AC power cycles in FLASH
- 4) Power supply tracks ON time in FLASH
- 5) Power supply loads warning and fault event counter data from FLASH into RAM
- 6) Upon a warning event; the PSU shall increment the associated counter in RAM.
- 7) Upon and fault event the PSU shall increment the associated counter in RAM
- 8) Upon a fault event that causes the PSU to shutdown all event data in the PSU's RAM is saved to event data location N in the power supply's FLASH. This data includes the real time clock, number of AC & PSON power cycles, PSU ON time, warning event counters and fault event counters.

Rev.03.09.18_#1.4 CSU550 Series Page 41

Commands:

Name: MFR_BLACKBOX

Format: Read Block with PEC (238 bytes)

Code: DCh

	Item	Number of Bytes	Description
	System top assembly number	10	The system will write its Intel part number for the system top assembly to the power supply when it is powered ON. This is 9 ASCI characters.
	System serial number	10	The system shall write the system serial number to the power supply when it is powered ON. This include the serial number and date code.
	Motherboard assembly number	10	The system will write the motherboard Intel part number for the assembly to the power supply when it is powered ON. This is 9 ASCI characters.
System Tracking Data	Motherboard serial number	10	The system shall write the motherboard's serial number to the power supply when it is powered ON. This includes the serial number and date code.
	Present total PSU ON time	3	Total on time of the power supply with PSON asserted in minutes. LSB = 1 minute.
	Present number of AC power cycles	2	Total number of times the power supply powered OFF then back ON due to loss of AC power. This is only counted when the power supply's PSON# signal is asserted. This counter shall stay at FFFFh once the max is reached.
	Present number of PSON power cycles	2	Total number of times the power supply is powered OFF then back ON due to the PSON# signal de-asserting. This is only counted when AC power is present to the power supply. This counter shall stay at FFFFh once the max is reached.
Power supply event data (N)		38	Most recent occurrence of saved black box data
			The power supply shall track these time and power cycle counters in RAM. When the a black box event occurs the data is saved into the Black Box.
	Power supply total power on time	3	Total on time of the power supply in minutes. LSB = 1 minute.
Time Stamp	Real Time Clock Data from System (reserved for future use)	4	This time stamp does not need to generated by the power supply. The system rights a real time clock value periodically to the power supply using the MFR_REAL_TIME command. Format is based on IPMI 2.0. Time is an unsigned 32-bit value representing the local time as the number of seconds from 00:00:00, January 1, 1970. This format is sufficient to maintain time stamping with 1-second resolution past the year 2100. This is based on a long standing UNIX-based standard for time keeping, which represents time as the number of seconds from 00:00:00, January 1, 1970 GMT. Similar time formats are used in ANSI C
	Number of AC power cycles	2	Number of times the power supply powered OFF then back ON due to loss of AC power at the time of the event. This is only counted when the power supply's PSON# signal is asserted.
	Number of PSON power cycles	2	Number of times the power supply is powered OFF then back ON due to the PSON# signal deasserting at the time of the event. This is only counted when AC power is present to the power supply.

			Page 42
	Item	Number of Bytes	Description
			The power supply shall save these PMBus values into the Black Box when a black box event occurs. Fast events may be missed due to the filtering effects of the PMBus sensors
	STATUS_WORD	2	
	STATUS_IOUT	1	
	STATUS_INPUT	1	
	STATUS_TEMPERTATURE	1	
	STATUS_FAN_1_2	1	
PMBus	READ_VIN	2	
	READ_IIN	2	
	READ_IOUT	2	
	READ_TEMPERATURE_1	2	
	READ_TEMPERATURE_2	2	
	READ_FAN_SPEED_1	2	
	READ_PIN	2	
	READ_VOUT	2	
			The power supply shall track the total number for each of the following events. These value shall be saved to the black box when a black box event occurs. Once a value has reached 15, it shall stay at 15 and not reset.
	AC shutdown due to under voltage on input	Lower ½	
	Thermal shutdown	Upper ⅓	
	Over current or over power shutdown on output	Lower ½	The power supply shall save a count of these critical events non-volatile memory each time they occur. The counters wi
	General failure shutdown	Upper ⅓	increment each time the associated STATUS bit is asserted.
Event Counters	Fan failure shutdown	Lower ½	
	Shutdown due to over voltage on output	Upper ½	
	Input voltage warning; no shutdown	Lower ½	The power supply shall save into RAM a count of these warning
	Thermal warning; no shutdown	Upper ½	events. Events are count only at the initial assertion of the event/bit. If the event persists without clearing the bit the counter will not be incremented. When the power supply shuts down it
	Output current power warning; no shutdown	Lower ½	shall save these warning event counters to non-volatile memory. The counters will increment each time the associated STATUS
	Fan slow warning; no shutdown	Upper ½	bit is asserted.
Power supply event data (N-1)		38	
Power supply event data (N-2)		38	
Power supply event data (N-3)		38	
Power supply event data (N-4)		38	

Rev.03.09.18_#1.4 CSU550 Series Page 43

Name: MFR_REAL_TIME_BLACK_BOX Format: Write/Read Block with PEC (4 bytes)

Code: DDh

The system shall use this command to periodically write the real time clock data to the power supply.

Format is based on IPMI 2.0. Time is an unsigned 32-bit value representing the local time as the number of seconds from 00:00:00, January 1, 1970. This format is sufficient to maintain time stamping with 1-second resolution past the year 2100.

This is based on a long standing UNIXbased standard for time keeping, which represents time as the number of seconds from 00:00:00, January 1, 1970 GMT. Similar time formats are used in ANSI C.

Name: MFR_SYSTEM_BLACK_BOX

Format: Write/Read Block with PEC (40 bytes). Low byte first.

Code: DEh

The system uses this command to write the following data to the PSU.

Item	Bytes	
System top assembly number	1-10	Low bytes
System serial number	11-20	
Motherboard assembly number	21-30	
Motherboard serial number	31-40	High bytes

Name: MFR_BLACKBOX_CONFIG Format: Read/Write Byte with PEC

Code: DFh

Bit	Value	Description
0	0 = disable black box function 1 = enable black box function	Writing a 1 enables the power supply with black box function. Writing a 0 disables the power supply black box function. The state of MFR_BLACKBOX_CONFIG shall be saved in non-volatile memory so that it is not lost during power cycling. Intel shall receive the power supply with the black box function enabled; bit 0 = '1'.

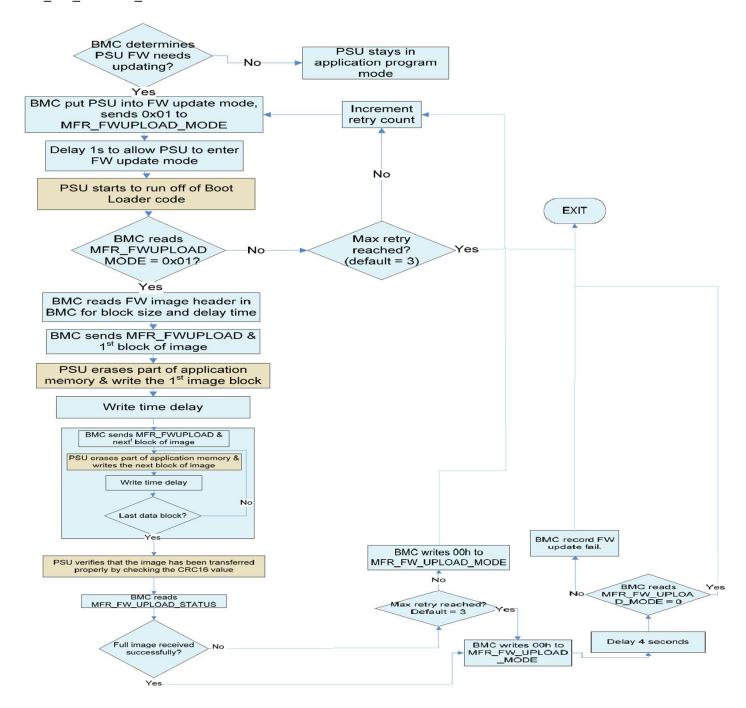
Name: MFR_CLEAR_BLACKBOX Format: Send Byte with PEC

Code: E0h

The MFR_CLEAR_BLACKBOX command is used to clear all black box records simultaneously. This command is write only. There is no data byte for this command.

Firmware update

BMC uses these commands to determine of FW needs updating:


MFR_FW_REVISION

MFR_MODEL

MFR_FW_UPLOAD_MODE

MFR HW COMPATIBILITY

MFR_FW_UPLOAD_CAPABILITY

Rev.03.09.18_#1.4 CSU550 Series Page 45

Name: MFR_HW_COMPATIBILITY

Format: Read Word

Code: D4h

Bytes	Value	Description
Low	ASCI code for first letter/number of the PSU HW compatibility.	This is a COMPATIBILITY value used to tell if there are any changes in the FW that create an incompatibility with the
High	ASCI code for second letter/number of the PSU HW compatibility	FW. This value only changes when the PSU HW is changed creating an incompatibility with older versions of FW.

Name: MFR_FWUPLOAD_CAPABILITY

Format: Read Byte

Code: D5h

The system can read the power supply's FW upload mode capability using this command. For any given power supply; more than one FW upload mode may be supported. The supported FW upload mode(s) must support updating all available FW in the power supply.

Bit	Value	Description
0 (for future use)	1 = PSU support FW uploading in standby mode only	For future use
1 (for future use)	1 = PSU supports FW uploading in ON state; but all the new FW will not take effect until a power cycle with PSON.	For future use
2	1 = PSU supports FW uploading in the ON state and no power cycle needed	Method used for updating the application program in the power supply
3-7	Reserved	

Rev.03.09.18_#1.4 CSU550 Series Page 46

Name: MFR_FWUPLOAD_MODE Format: Read/Write Byte

Code: D6h

Bit	Value	Description
0	0 = exit firmware upload mode 1 = firmware upload mode	Writing a 1 puts the power supply into firmware upload mode and gets it ready to receive the 1st image block via the MFR_FW_UPLOAD command. The system can use this command at any time to restart sending the FW image. Writing a 0 puts the power supply back into normal operating mode. Writing a 1 restarts This command will put the PSU into standby mode if the PSU supports FW update in standby mode only. If the power supply image passed to the PSU is corrupt the power supply shall stay in firmware upload mode even if the system requested the PSU to exit the FW upload mode.
1-7		Reserved

Name: MFR_FWUPLOAD

Format: Block Write (block = size as defined by the image header)

Code: D7h

Bytes	Value	Description
Block size defined in header	Image header & image data	Command used to send each block of the FW image. Header should follow the format described in section 10.5.5. The image shall contain block sequencing numbers to make sure the PSU puts the right data blocks into the right memory space on the PSU MCU.

Rev.03.09.18_#1.4 CSU550 Series Page 47

Name: MFR_FWUPLOAD_STATUS

Format: Read Word

Code: D8h

At any time during or after the firmware image upload the system can read this command to determine status of the

firmware upload process.

Reset: all bits get reset to '0' when the power supply enters FW upload mode.

Bit	Description
0	1 = Full image received successful
1	1 = Full image not received yet. The PSU will keep this bit asserted until the full image is received by the PSU.
2	1 = Full image received but image is bad or corrupt. Power supply can power ON, but only in 'safe mode' with minimal operating capability.
3 (for future use)	1 = Full image received but image is bad or corrupt. Power supply can power ON and support full features.
4	1 = FW image not supported by PSU. If the PSU receives the image header and determines that the PSU HW does not support the image being sent by the system; it shall not accept the image and it shall assert this bit.
5-15	Reserved

Name: MFR_FW_REVISION Format: Block Read, 3 bytes

Code: D9h

Bytes	Value	Description
0	0 - 255	Minor revision; secondary
1	0 - 255	Minor revision; primary
2	0 - 255	Bit 7: 1-> Down grading of PSU FW has to be avoided. System BMC can elect to ignore this bit if needed, but recommended to follow. 0 -> No restriction in downgrading the PSU FW. BMC can update the PSU FW to be in sync with its known version. Bit 0-6: Major revision

Rev.03.09.18_#1.4 CSU550 Series Page 48

FRU (EEPROM) Data

The FRU (Field Replaceable Unit) data format is compliant with the Intel IPMI v1.0 specification.

The CSU550 series uses 1 page of EEPROM for FRU purpose. A page of EEPROM contains up to 256 byte-sized data locations.

Where: OFFSET

-The OFFSET denotes the address in decimal format of a particular data byte within

CSU550 series EEPROM.

VALUE

-The VALUE details data written to a particular memory location of the EEPROM.

DEFINITION

-The contents DEFINITION refers to the definition of a particular data byte.

OFF	SET	DEFINITION	SPEC	SPEC VALUE		
(DEC)	(HEX)	(REMARKS)	(DEC)	(HEX)		
		COMMON HEADER, 8 BYTES				
0	00	FORMAT VERSION NUMBER (Common Header) 7:4 - Reserved, write as 0000b 3:0 - Format Version Number = 1h for this specification	1	01		
1	01	INTERNAL USE AREA OFFSET (Not required, do not reserve)	0	00		
2	02	CHASSIS INFO AREA OFFSET (Not required, do not reserve)	0	00		
3	03	BOARD INFO AREA OFFSET (Not required, do not reserve)	0	00		
4	04	PRODUCT INFO AREA OFFSET	1	01		
5	05	MULTI RECORD AREA OFFSET	9	09		
6	06	PAD (Not required, do not reserve)	0	00		
7	07	ZERO CHECK SUM (256 – (Sum of bytes 0 to 6))	245	F5		
	•	PRODUCT INFORMATION AREA, 64 BYTES	•			
8	08	FORMAT VERSION NUMBER (Product Info Area) 7:4 - Reserved, write as 0000b 3:0 - Format Version Number = 1h for this specification	1	01		
9	09	PRODUCT INFO AREA LENGTH (In multiples of 8 bytes)	8	08		
10	0A	Language (English)	25	19		
11	0B	MANUFACTURER NAME TYPE / LENGTH (C7H) 7:6 - (11)b, 8-Bit ASCII + Latin 1, 5:0 - (000111)b, 7-Byte Allocation	199	C7		
12 13 14 15 16 17	0C 0D 0E 0F 10 11	MANUFACTURER'S NAME 7 byte sequence "A"= 41h "R"= 52h "T"= 54h "E"= 45h "S"= 53h "Y"= 59h "N"= 4Eh	65 82 84 69 83 89 78	41 52 54 45 53 59 4E		
19	13	PRODUCT NAME Type/Length (D0H) Type = "ASCII+LATIN1" = (11)b Length = 16 Bytes = (010000)b	208	D0		

OFFSET		DEFINITION	SPEC VALUE		
(DEC)	(HEX)	(REMARKS)	(DEC)	(HEX)	
, ,	, ,	Product Name, 8 Byte sequence	. ,	. ,	
20	14	"CRPS550W"	67	43	
21	15	In Decimal = 067d, 082d, 080d, 083d, 053d, 053d, 048d, 087d, 32d, 32d, 32d, 32d, 32d, 32d, 32d, 32	82	52	
22	16	32d	80	50	
23	17	In Hex = 43H, 52H, 50H, 53H, 35H, 35H, 30H, 57H, 20H, 20H, 20H, 20H, 20H, 20H, 20H	83	53	
24	18		53	35	
25	19		53	35	
26	1A		48	30	
27	1B		87	57	
28	1C		32	20	
29	1D		32	20	
30	1E		32	20	
31	1F		32	20	
32	20		32	20	
33	21		32	20	
34	22		32	20	
35	23		32	20	
		PRODUCT PART/MODEL NUMBER Type/Length (D0H)			
36	24	Type = "ASCII+LATIN1" = (11)b Length = 16 Bytes = (010000)b	208	D0	
	0.5	Part / Model Number	07	40	
37	25	"CSU550AP-3"	67	43	
38	26	In Decimal = 067d, 083d, 085d, 053d, 053d, 048d, 065d, 080d, 045d, 051d	83	53	
39	27	In Hex = 43H, 53H, 55H, 35H, 35H, 30H, 41H, 50H, 2DH, 33H	85	55	
40	28	Note: For Inspur version, the model is "CSU550AP-3-100".	53	35	
41	29		53	35	
42	2A		48	30	
43	2B		65	41	
44	2C		80	50	
45	2D		45	2D	
46	2E		51	33	
47	2F		32	20	
48	30		32	20	
49	31		32	20	
50	32		32	20	
51	33		32	20	
52	34	PRODUCT VERSION NUMBER Type/Length (C2h) Type = "ASCII+LATIN1" = (11)b Length = 2 bytes = (000010)b	194	C2	
53	35	Version, 2 Byte sequence	XX	XX	
54	36	"XX"	XX	XX	
		PRODUCT SERIAL NUMBER Type/Length			
55	37	Type = "ASCII+LATIN1" = (11)b Length = 13 bytes = (001101)b	205	CD	
56	38	Serial number, 13 Byte sequence "XXXXXXXXXXXX"	XX	XX	
57	39		XX	XX	
58	39 3A		XX	XX	
59	3B		XX	XX	
60	3C		XX	XX	
61	3D		XX	XX	
62	3E		XX	XX	
63	3F		XX	XX	
64	40		XX	XX	
65	41		XX	XX	
66	42		XX	XX	
67	43		XX	XX	
68	44		XX	XX	
	77	DAD (***********************************		//\	
	4-	PAD (reserved)		00	
69	45 46	Default value is 0.	0	00	
70	46	Default value is 0.	0	00	

OFF	SET	DEFINITION	SPEC VALUE		
(DEC)	(HEX)	(REMARKS)	(DEC)	(HEX)	
71	47	ZERO CHECK SUM (256-(sum of bytes 8 to 70)) Per Unit	92	5C	
		Zero Check Sum :Should follow check sum calculation as per IPMI v1.3 specs			
		Multi Record Area, 56 Bytes		ı	
72	48	Power Supply Record Header Record Type = 00 for power supply info	0	00	
73	49	End of List /Record Format Version Number for 12V Output Record	2	02	
74	4A	Record Length of 12V Output Record	20	14	
75	4B	Record checksum	172	AC	
76	4C	header checksum	62	3E	
		Power Supply Record			
		Combined Wattage, Byte 1 and Byte 2: 550W = 0226H byte 1 (LSB) = 26h = 38d byte 2 (MSB) = 02h = 02d 2 Bytes Sequence			
77	4D	In Decimal = 38d, 02d	38	26	
78	4E	In Hex = 26h,02h	02	02	
79	4F	Peak VA, 1500W = 05DCH 2 Bytes Sequence In Decimal = 220d, 5d	220	DC	
80	50	In Hex = DCH, 05H	05	05	
81	51	Inrush Current, 10A In Decimal = 10d In Hex = 0AH	10	0A	
82	52	Inrush Interval, 5mS In Decimal = 5d In Hex = 05H	05	05	
		Low End Input Voltage Range 1(10mV), (90V / 10mV) 9000 = 2328H			
		2 Bytes Sequence			
83 84	53 54	In Decimal = 40d, 35d In Hex = 28H, 23H	40 35	28 23	
04	34	High End Input Voltage Range 1(10mV), (264V/10mV) 26400= 6720H	35	23	
		2 Bytes Sequence			
85	55	In Decimal = 032d, 103d	32	20	
86	56	In Hex = 20H, 67H	103	67	
87	57	Low End Input Frequency Range, 47Hz = 2FH	47	2F	
88	58	Low End Input Frequency Range, 63Hz = 3FH	63	3F	
89	59	AC Dropout Tolerance in ms, 10mS= 0AH	10	0A	
90	5A	Binary Flags: For each of the following binary flags No = 0, Yes = 1;. Bits 7-5: RESERVED, WRITE AS 000B Bit4: Tachometer Pulses Per Rotation / Predictive Fail Polarity BIT = 0 Bit3: Hot Swap / Redundancy Support BIT = 1 Bit2: Auto switch Support BIT = 1 Bit1: Power Factor Correction Support BIT = 1 Bit0: Predictive Fail Support BIT = 0	14	0E	
91 92	5B 5C	Peak Wattage Capacity and Holdup Time ,(Set for 650Watts/3S) In Decimal = 138 In Hex = 8AH (LSB First) In Decimal = 50 In Hex = 32H	138 50	8A 32	
93 94 95	5D 5E 5F	Combined Wattage, Byte 1: 0000 0000 =00H = 00d (12VMain - voltage1,12VSB - voltage2) Byte 2 and Byte 3: Total combined Wattage = 550W => 0226H(LSB First)	0 38 02	00 26 02	
96	60	Predictive Fail Tachometer Lower Threshold, Not Applicable. Predictive Failure is not Supported.	00	00	

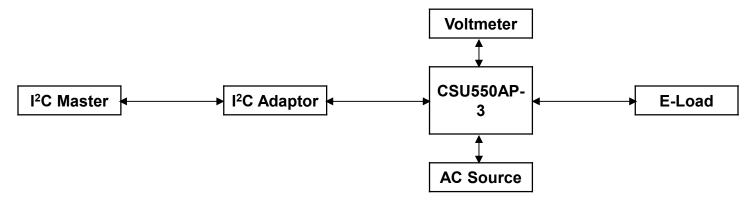
OFF	SET	DEFINITION	SPEC V	/ALUE
(DEC)	(HEX)	(REMARKS)	(DEC)	(HEX)
		12V OUTPUT RECORD HEADER		
97	61	Record Type = 01 for power supply info	01	01
98	62	End of List /Record Format Version Number for 12V Output Record	02	02
99	63	Record Length of 12V Output Record	13	0D
100	64	Record checksum (256-(sum of bytes 102 to 114))	244	F4
101	65	header checksum (256-(sum of bytes 97 to 100))	252	FC
		12V OUTPUT RECORD		
		Output Information, 001 = 01H		
102	66	Bit 7: Standby Information = 0B	01	01
102	00	Bits 6-4: Reserved, Write as 000B		01
		Bits 3-0: Output Number 1 = 001B		
		Nominal Voltage (10mV), (12V / 10mV) 1200 = 04B0H		
		2 Bytes Sequence		
103	67	In Decimal: 176d, 004d	176	B0
104	68	In Hex: B0H, 04H	04	04
		Maximum Negative Voltage Deviation (10mV), 1140 = 0474H		
105	60	2 Bytes Sequence In Decimal: 116d, 004d	116	74
105 106	69 6A	In Hex: 74H. 04H	116	74 04
100	0/1		0-1	<u> </u>
		Maximum Positive Voltage Deviation (10mV), 1260 = 04ECH 2 Bytes Sequence		
107	6B	In Decimal: 236d, 004d	236	EC
108	6C	In Hex: ECH, 04H	4	04
		Ripple and Noise pk-pk (mV), 120 = 78H		
		2 Bytes Sequence		
109	6D	In Decimal: 120d, 000d	120	78
110	6E	In Hex: 78H, 00H	0	00
		Minimum Current Draw (10mA), 0000 = 0000H		
		2 Bytes Sequence		
111	6F	In Decimal: 000d, 000d	0	00
112	70	In Hex: 00H, 00H	0	00
		Maximum Current Draw (10mA), 45000 = AFC8H		
440	_,	2 Bytes Sequence	000	00
113	71 72	In Decimal: 200d, 175d	200 175	C8 AF
114	12	In Hex: C8H, AFH	1/5	AF
		12VSB OUTPUT RECORD HEADER		
115	73	Record type = 01 for DC Output Record	01	01
116 117	74 75	End of List /Record Format Version Number for 12VSB Output Record Record Length of 12V DC Output Record	130	82 0D
117	75 76	Record CHECKSUM of 12VSB Output Record	29	1D
119	77	Header CHECKSUM of 12VSB Output Record Header	83	53
. 10	.,,	12VSB OUTPUT RECORD	00	
		Output Information, 002 = 02H		
		Bit 7: Standby Information = 1B		
120	78	Bits 6-4: Reserved, Write as 000B	130	82
		Bits 3-0: Output Number 2 = 0010B		
		Nominal Voltage (10mV), (12V / 10mV) 1200 = 04B0H		
		2 Bytes Sequence		
121	79	In Decimal: 176d, 004d	176	B0
122	7A	In Hex: B0H, 04H	4	04
		Maximum Negative Voltage Deviation (10mV), 1140 = 0474H		
		2 Bytes Sequence		
123	7B	In Decimal: 116d, 004d	116	74
124	7C	In Hex: 74H, 04H	04	04

OFF	SET	DEFINITION	SPEC VALUE		
(DEC)	(HEX)	(REMARKS)	(DEC)	(HEX)	
		Maximum Positive Voltage Deviation (10mV), 1260 = 04ECH			
		2 Bytes Sequence			
125	7D	In Decimal: 236d, 004d	236	EC	
126	7E	In Hex: ECH, 04H	4	04	
		Ripple and Noise pk-pk (mV), 120 = 78H			
		2 Bytes Sequence			
127	7F	In Decimal: 120d, 000d	120	78	
128	80	In Hex: 78H, 00H	0	00	
		Minimum Current Draw (10mA), 0000 = 0000H			
100		2 Bytes Sequence			
129	81	In Decimal: 000d, 000d	0	00	
130	82	In Hex: 00H, 00H	U	00	
		Maximum Current Draw (10mA), 2500 = 09C4H			
124	02	2 Bytes Sequence	106		
131 132	83 84	In Decimal: 196d, 09d In Hex: C4H, 09H	196 09	C4 09	
133	85	Reserved, Default value is 0.	0	00	
134	86	Reserved, Default value is 0.	0	00	
135	87	Reserved, Default value is 0.	ő	00	
136	88	(88h-FFh is Reserved, Default value is 0.)	0	0	
137	89	(Vollet i il is reserved, Deladit value is 0.)	ő	0	
138	8A		o o	0	
139	8B		0	Ö	
140	8C		0	0	
141	8D		0	0	
142	8E		0	0	
143	8F		0	0	
144	90		0	0	
145	91		0	0	
146 147	92 93		0	0	
147	94		0	0	
149	95		Ö		
150	96		o o	0	
151	97		0	Ö	
152	98		0	0	
153	99		0	0	
154	9A		0	0	
155	9B		0	0	
156	9C		0	0	
157 158	9D 9E		0	0	
150	9E 9F		0	0	
160	A0		0	0	
161	A1		ő	0	
162	A2		Ö	0	
163	A3		0	0	
164	A4		0	0	
165	A5		0	0	
166	A6		0	0	
167	A7		0	0	
168 169	A8 A9		0	0	
170	A9 AA		0	0	
170	AA		0	0	
172	AC		0	0	
173	AD		ő	0	
174	AE		ő	0	
175	AF		0	0	
176	В0		0	0	

OFF	SET	DEFINITION	SPEC V	/ALUE
(DEC)	(HEX)	(REMARKS)	(DEC)	(HEX)
177	B1	(88h-FFh is Reserved, Default value is 0.)	0	0
178	B2		0	0
179	В3		0	0
180	B4		0	0
181	B5		0	0
182	B6		0	0
183	B7		0 0	0 0
184 185	B8 B9		0	0
186	BA		0	0
187	BB		0	o l
188	BC		0	o l
189	BD		0	0
190	BE		0	0
191	BF		0	0
192	C0		0	0
193	C1		0	0
194	C2		0	0
195	C3		0	0
196	C4		0	0
197	C5		0	0
198	C6 C7		0 0	0 0
199 200	C8		0	0
200	C9		0	0
202	CA		0	o l
203	CB		0	o l
204	CC		0	0
205	CD		0	0
206	CE		0	0
207	CF		0	0
208	D0		0	0
209	D1		0	0
210	D2		0	0
211	D3		0 0	0 0
212 213	D4 D5		0	0
214	D6		0	0
215	D7		0	o l
216	D8		0	0
217	D9		0	0
218	DA		0	0
219	DB		0	0
220	DC		0	0
221	DD		0	0
222	DE		0	0
223	DF		0	0
224	E0		0 0	0
225 226	E1 E2		0	0
226	E2 E3		0	0
228	E4		0	0
229	E5		0	0
230	E6		Ö	o l
231	E7		0	0
232	E7 E8		0	0
233	E9		0	0
234	EA		0	0
235	EB		0	0
236	EC		0	0
237	ED		0	0

Rev.03.09.18_#1.4 CSU550 Series Page 54

OFF	SET	DEFINITION	SPEC V	ALUE
(DEC)	(HEX)	(REMARKS)	(DEC)	(HEX)
238	EE	(88h-FFh is Reserved, Default value is 0.)	0	0
239	EF		0	0
240	F0		0	0
241	F1		0	0
242	F2		0	0
243	F3		0	0
244	F4		0	0
245	F5		0	0
246	F6		0	0
247	F7		0	0
248	F8		0	0
249	F9		0	0
250	FA		0	0
251	FB		0	0
252	FC		0	0
253	FD		0	0
254	FE		0	0
255	FF		0	0


PMBus™ Interface Support

The CSU550 series is compliant with the industry standard PMBusTM protocol for monitoring and control of the power supply via the I^2C interface port.

CSU550 Series PMBus™ General Instructions

Equipment Setup

The following is typical I²C communication setup:

CSU550 Series Support PMBus™ Command List

The CSU550 series is compliant with the industry standard PMBusTM protocol for monitoring and control of the power supply via the i^2C interface port.

CSU550 Series Supported PMBus™ Command List:

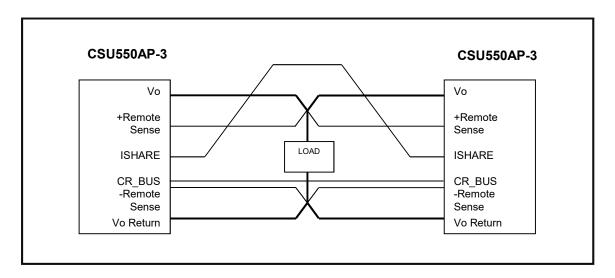
Command Code	Command Name	Default Value	Access Type	Data Bytes	Data Format	Description
00h	Page	0	R/W	1	Hex	Valid input: 00h
	OPERATION	80	R/W	1	Bitmapped	Used to turn the unit ON/OFF in conjunction with the input PSON pin.
01h	b7:6	10				00 - Immediate Turn OFF (No Sequencing) 01 - Soft Turn OFF (With Sequencing) 10 - PSU ON
	b5:4	00				Reserved
	b3:2	00				Reserved
	b1:0	00				Reserved
03h	CLEAR_FAULTS	0	W		N/A	
	CAPABILITY	90	R	1	Bitmapped	Provides a way for the hosts system to determine some key capabilities of a PMBus TM device.
19h	b7 - Packet Error Checking					0 - PEC not supported 1 - PEC supported
1311	b6 - Maximum Bus Speed					0 - Maximum supported bus speed, 100KHz 1 - Maximum supported bus speed, 400KHz
	b5 - SMBALERT#					0 - SMBus Alert Pin not supported 1 - SMBus Alert Pin supported
	b4:0					Reserved
1Ah	QUERY	-	BR/BW		N/A	Used to determine if the PSU supports a specific command; It should return the proper information about any commands listed
1Bh	SMBALERT_MASK	-	BR/BW		N/A	Used with STATUS_INPUT, STATUS_TEMPERATURE, STATUS_IOUT
20h	VOUT_MODE	0x17	R	1	Bitmapped	Specifies the mode and parameters of Output Voltage related Data Formats
	COEFFICIENTS		BW/BR	5	Hex	Use to retrieve the m, b and R coefficients, needed for DIRECT data format
30h	byte 5					R byte
	byte 4:3					b low Byte, b high byte
	byte 2:1					M low Byte, m high byte
	FAN_CONFIG_1_2	90	R/W	1	Bitmapped	
	b7	1				0 - No fan is installed in position 1 1 - Fan is installed in position 1
3Ah	b6	0				0 - Fan is commanded in RPM 1 - Fan is commanded is DC
	b5:4	01				00 - 1 pulse per revolution 01 - 2 pulse per revolution 10 - 3 pulse per revolution 11 - 4 pulse per revolution
3Bh	FAN_COMMAND_1	0000	R/W	2	Linear	Adjusts the operation of the Fans. The device may override the command, if it requires higher value, to maintain proper device temperature. Duty cycle Control - Commands Speeds from 0 to 100%

CSU550 Series Supported PMBus $^{\text{TM}}$ Command List:

Command Code	Command Name	Default Value	Access Type	Data Bytes	Data Format	Description
46h	IOUT_OC_FAULT_LIMIT	E9D8	R	2	Linear	Sets the Over current threshold in Amps. (59.00A)
4Ah	IOUT_OC_WARNING_LIMIT	E998	R	2	Linear	Sets the Over Current Warning threshold in Amps. (51.00A)
51h	OT_WARN_LIMIT(Hot Spot)	005A	R	2	Hex	Secondary ambient temperature warning threshold, in degree C. Operating limit (90 degC)
5Dh	IIN_OC_WARN_LIMIT	CAC0	R	2	Linear	Sets the Over current threshold in Amps. (5.50A)
6Ah	POUT_OP_WARN_LIMIT	028A	R	2	Linear	Sets the Over power threshold in Watt. (650W)
6Bh	PIN_OP_WARN_LIMIT	0384	R	2	Linear	Sets the Over power threshold in Watt. (900W)
	STATUS_BYTE	-	R	1	Bitmapped	Returns the summary of critical faults
	b6 - OFF					Unit is OFF
	b5 - VOUT_OV					Output over-voltage fault has occurred
78h	b4 - IOUT_OC					Output over-current fault has occurred
7011	b3 - VIN_UV					An input undervoltage fault has occurred
	b2 - TEMPERATURE					A temperature fault or warning has occurred
	b1 - CML					A communication, memory or logic fault has occurred.
	STATUS_WORD	-	R	2	Bitmapped	Summary of units Fault and warning status.
	b15 - VOUT					An output voltage fault or warning has occurred
	b14 - IOUT					An Output current or power fault or warning has occurred.
	b13 - INPUT					An input voltage, current or power fault or warning as occurred.
	b11 - POWER_GOOD#					The POWER_GOOD signal is de-asserted
	b10 - FANS					A fan or airflow fault or warning has occurred.
79h	b7 - BUSY					A fault was declared because the device was busy and unable to respond.
	b6 - OFF					Unit is OFF
	b5 - VOUT_OV					Output over-voltage fault has occurred
	b4 - IOUT_OC					Output over-current fault has occurred
	b3 - VIN UV					An input under-voltage fault has occurred
	b2 - TEMPERATURE					A temperature fault or warning has occurred
	b1 - CML					A communication, memory or logic fault has occurred.
	STATUS_VOUT	-	R	1	Bitmapped	
7/4	b7 - VOUT Over-Voltage Fault	-				VOUT Over-Voltage Fault
7Ah	b4 - VOUT Under-Voltage Fault	-				VOUT Under-Voltage Fault
	STATUS_IOUT		R	1	Bitmapped	
	b7 - IOUT Overcurrent Fault				1	IOUT Overcurrent Fault
7Bh	b5 - IOUT Overcurrent Warning					IOUT Overcurrent Warning
	b1 - POUT_OP_FAULT					POUT OP FAULT
	b0 - POUT_OP_WARNING					POUT OP WARNING

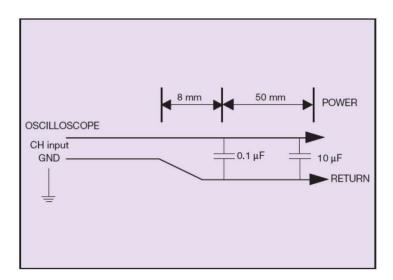
CSU550 Series Supported PMBus $^{\text{TM}}$ Command List:

Command Code	Command Name	Default Value	Access Type	Data Bytes	Data Format	Description
	STATUS_INPUT		R	1	Bitmapped	Input related faults and warnings
	b7 - VIN_OV_FAULT					VIN Over voltage Fault
	b5 - VIN_UV_WARNING					VIN Under voltage Warning
7Ch	b4 - VIN_UV_FAULT					VIN Under voltage Fault
7011	b3 - Unit Off For Low Input Voltage					Unit is OFF for insufficient Input Voltage
	b1 - IIN_OC_WARNING					IIN Overcurrent Warning
	b0 - PIN_OP_WARNING					PIN Overpower Warning
	STATUS_TEMPERATURE		R	1	Bitmapped	Temperature related faults and warnings
7Dh	b7 - Over temperature Fault					Over temperature Fault
7511	b6 - Over temperature Warning					Over temperature Warning
	STATUS_CML		R	1	Bitmapped	Communications, Logic and Memory
751	b7 - Invalid/Unsupported command					Invalid or unsupported Command Received
7Eh	b6 - Invalid/Unsupported Data					Invalid Data
	b5 - Packet Error Check Failed					Packet Error Check Failed
80h	INPUT_TYPE		R	1	Hex	00h - no input 01h - AC input 02h - DC input
	STATUS_FANS_1_2	00	R	1	Bitmapped	
0.41	b7 - Fan1 Fault					Fan1 Fault
81h	b5- Fan1 Warning					Fan1 Warning
	b3 - Fan1 Speed Overridden					Fan1 Speed Overridden
86h	Ein		BR	6	Direct	Returns the accumulated input power over time
87h	Eout		BR	6	Direct	Returns the accumulated output power over time
88h	READ_VIN		R	2	Linear	Returns input Voltage in Volts ac
89h	READ_IIN		R	2	Linear	Returns input Current in Amperes
8Bh	READ_VOUT		R	2	Linear	Returns the actual, measured voltage in Volts
8Ch	READ_IOUT		R	2	Linear	Returns the output current in amperes
8Dh	READ_TEMPERATURE_1 (Ambient)		R	2	Linear	Returns the temperature of temperature test 1
8Eh	READ_TEMPERATURE_2 (Hot Spot)		R	2	Linear	Returns the temperature of temperature test 2
90h	READ_FAN_SPEED_1		R	2	Linear	Speed of Fan 1
96h	READ_POUT		R	2	Linear	Returns the output power, in Watts.
97h	READ_PIN		R	2	Linear	Returns the input power, in Watts.
	PMBUS_REVISION	22	R	1	Bitmapped	Reads the PMBus revision number
98h	b7:5	0001				Part 1 Revision 0000 – Revision 1.0 0001 – Revision 1.1
	b4:0	0001				Part 2 Revision 0000 – Revision 1.0 0001 – Revision 1.1


CSU550 Series Supported PMBus $^{\text{TM}}$ Command List:

Command Code	Command Name	Default Value	Access Type	Data Bytes	Data Format	Description
99h	MFR_ID	ARTESYN### ##### (0x41 52 54 45 53 59 4E 23 23 23 23 23 23 23 23 23	BR	15	ASCII	Abbrev or symbol of manufacturers name. ASCII
9Ah	MFR_MODEL	CSU550AP- 3##### (0x43 53 55 35 35 30 41 50 2D 33 23 23 23 23 23)	BR	15	ASCII	Manufacturers Model number, ASCII format
9Bh	MFR_REVISION		BR	6	Hex	1st byte and 4th byte is 0x00. 2nd and 3rd byte: Secondary major and minor revision. 5th and 6th byre: Primary major and minor revision.
9Ch	MFR_LOCATION	LUODING (0x4C 55 4F 44 49 4E 47)	BR	7	ASCII	Manufacturers facility, ASCII format
9Dh	MFR_DATE	0716 (0x30 37 31 36)	BR	4	ASCII	Manufacture Date, ASCII format structure : YYMMDD
9Eh	MFR_SERIAL	"xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	BR	15	ASCII	Unit serial number, ASCII format.
A0h	MFR_VIN_MIN	005A	R	2	Linear	Minimum Input Voltage (90Vac)
A1h	MFR_VIN_MAX	0108	R	2	Linear	Maximum Input Voltage (264Vac)
A4h	MFR_VOUT_MIN	16CD	R	2	Linear	Minimum Output Voltage Regulation Window. (11.4V)
A5h	MFR_VOUT_MAX	1933	R	2	Linear	Maximum Output Voltage. Regulation Window (12.6V)
A6h	MFR_IOUT_MAX	E968	R	2	Linear	Maximum Output Current (45A)
A7h	MFR_POUT_MAX	0226	R	2	Linear	Maximum Output Power (550W)
C0h	MFR_MAX_TEMP_1 (Ambient)	0046	R	2	Linear	Maximum ambient temperature (70degC)
C1h	MFR_MAX_TEMP_2 (hot Spot)	0069	R	2	Linear	Maximum hot sopt temperature (105degC)
D0h	Cold_Redundancy_Config	00	R/W	1	Hex	00 - Normal 01 - Active 02 - Cold Standby 1 03 - Cold Standby 2 04 - Cold Standby 3 05 - Always Cold Standby
D6h	MFR_FWUPLOAD_MODE		R/W			
D7h	MFR_FWUPLOAD		BW			
D8h	MFR_FWUPLOAD_STATUS		R	2		
D9h	MFR_FW_REVISION		BR	3	Hex	Firmware reversion: SEC_Minor, PRI_Minor, FW_Major
DCh	MFR_BLACKBOX		BR	230		
DDh	MFR_REAL_TIME_BLACK_B OX		BR/BW	4		
DEh	MFR_SYSTEM_BLACK_BOX		BR/BW	40		
DFh	MFR_BLACKBOX_CONFIG		R/W			
E0h	MFR_CLEAR_BLACKBOX		W			

Application Notes


Current Sharing

The CSU550 series' main output V_O is equipped with current sharing capability. This will allow up to 4 power supplies to be connected in parallel for higher power application. Current share accuracy is typically 5% of full load. When supplying light loads between 15% and 25% of its rated load, the power supplies will share within 10% accuracy. Below 15% total loading, there is no guarantee of output current sharing.

Output Ripple and Noise Measurement

The setup outlined in the diagram below has been used for output voltage ripple and noise measurements on the CSU550 Series. When measuring output ripple and noise, a scope jack in parallel with a $0.1\mu F$ ceramic chip capacitor, and a $10\mu F$ aluminum electrolytic capacitor should be used. Oscilloscope should be set to 20MHz bandwidth for this measurement

Record of Revision and Changes

Issue	Date	Description	Originators
1.0	01.20.2017	First Issue	Alex.Li
1.1	09.02.2017	Updated the command list and the iTHD	Alex.Li
1.2	09.07.2017	Added the firmware updating process	Alex.Li
1.3	10.31.2017	Update the FRU data	A. Zhang
1.4	03.09.2018	1.Update" Always Standby" to "Always Cold Standby" 2.Update the PSON 3. 5. Add a diagram to current share section	K. Wang